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BOUNDS ON THE LATTICE RULE CRITERION R 

STEPHEN JOE 

ABSTRACT. Lattice rules are used for the numerical integration of periodic func- 
tions over the s-dimensional unit cube. They are normally classified according 
to their 'rank'; in simple terms, the rank of a lattice rule is the minimum number 
of sums required to write it down. One criterion for measuring the 'goodness' 
of a lattice rule is the quantity R which is the quadrature error for a certain test 
function. Bounds on R exist for rank-I and rank-2 lattice rules, but not for lat- 
tice rules of higher rank. For 1 < m < s, we shall look at certain rank-m rules 
and obtain bounds on R for them. These rank-m rules have nmr quadrature 
points, where n and r are relatively prime numbers. In order to obtain these 
bounds, we make use of a result which shows that R may be considered to be 
the quadrature error obtained when a modified lattice rule with only r quadra- 
ture points is applied to a modified test function. Some numerical results are 
given. 

1. INTRODUCTION 

Lattice rules are equal-weight quadrature rules used in the numerical evalu- 
ation of integrals of the form 

If f(x) dx, 

where 
Us={xelRs:O<xk<l, l<k<s} 

is the half-open unit cube in s dimensions. The function f is assumed to be 
1-periodic in each of its s variables. The abscissa set {xo, ..., X 1I} of the 
lattice rule 

IN-1 
(1.1) Qf = E i 

j=O 

consists of all the points in some 'integration lattice' that also belong to Us. A 
lattice is a discrete set of points in IRs such that the sum and difference of every 
point in the set also belongs to the set; it is an integration lattice if it contains 
the integer lattice Zs as a sublattice. A lattice rule with N distinct abscissae is 
said to be of order N. 
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A classification of lattice rules based on the concept of 'rank' may be found 
in [10]. There we find the result that every lattice rule may be written as an 
expression of the form 

nlml n1-11.I 

(1.2) Qf ZN f (n Izi + + 
nm S 

1m=0 jl O 

where z1, ... , Zm are integer vectors, m , which satisfies 1 < m < s, is the rank 
of the rule, nk+l divides nk for k = 1, .. ., m- I, and nm > 2. The order of 
the rule is given by N = njn2 . tinm. The rank and the invariants nI, ..., nm 
are uniquely determined numbers. (The abscissae as they appear in (1.2) may 
not lie in Us, but abscissae that do lie in Us may be obtained by subtraction 
of appropriate integer vectors; the assumed periodicity of f ensures that this 
subtraction leaves the lattice rule unchanged.) 

An important example of a lattice rule is the method of good lattice points 
due to Korobov [6] and Hlawka [2], in which the rule is of the rank-I form 

(1.3) Qf= k f (E f )N 

Here z is an integer vector of length s having no nontrivial factor common 
with N. 

The error in the lattice rule Q is easily stated. 

Theorem 1 [9]. Suppose Q is the lattice rule (1.1) and f has the absolutely 
convergent Fourier series representation 

f(x) = E a(h)el27rh-x. 
hEZS 

Then 

(1.4) Qf -If a(h). 
hELI 

In the theorem, h * x is the usual inner product in s dimensions, the prime 
on the sum indicates that the h = 0 term is omitted, and L' is the 'dual lattice' 
defined by 

L' := {h E Zs: h * x E Z Vx e L}; 
it is the dual of the lattice L(Q) which corresponds to Q. 

There are several criteria available for measuring the 'goodness' of a lattice 
rule, all coming from the number-theoretic literature associated with the method 
of good lattice points. One such criterion is given by the quantity R (see [7] 
and [8]), which for a lattice rule of order N is defined by 

R =R(Q):= Z 1 
hELl nE(N) h I h2 .. 

where h = max(i, IhI), and E(N) = {h E Zs: -N/2 < hk < N/2, 1 < k < s}. 
If 

i27rhx S 

(1.5) fN(X)= Z h- - =1HFN(Xk) 
hEE(N) h *h2 hs k=1 
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where 

ez27rhx ei27rhx (1.6) FN(X)= E e =1+ 
-N/2<h<N/2 heE*(N) 

with E*(N) := {h EZ2: -N/2 < h < N/2, h 54 O}, then we see from (1.4) that 

(1.7) R(Q) = QfN-IfN = QfN- 1. 

In Joe and Sloan [5] an asymptotic series was used to approximate the function 
FN(X) for x sufficiently far away from 0, allowing R to be calculated, using 
(1.5) and (1.7), in O(N) operations. 

Currently, there exist bounds on R for only rank-I (see [7]) and rank-2 (see 
[8]) lattice rules. These latter bounds do not have explicit constants. In this 
paper, we shall provide some new bounds on R (with explicit constants) for 
the lattice rules given by 

(1.8) 1 n-i n- lr-1 (kl km Os *. S 0) 

km O k0 =0 j=O 

where m = 0, 1, ... , s, z and r have no nontrivial common factor, and n 
and r are relatively prime. Such lattice rules arise from the imbedded sequences 
of lattice rules found in [4]. From there we have the result that for 1 < m < s, 
Qm is a lattice rule of rank m while Qo is evidently the rank-I rule given by 
(1.3). Thus, here we obtain bounds on R for lattice rules having ranks from 1 
to s inclusive. For simplicity, we shall only consider the case when r is prime. 
The bounds that are to be found in ?3 are obtained by deriving an expression 
for a certain mean value of R(Qm) . 

The derivation of this expression for the mean makes use of a result which 
shows that R(Qm) may be considered to be the quadrature error obtained when 
a certain r-point rank-i rule is applied to a modified function. This result is 
given in ?2. Besides being of theoretical use here, this result is also of practical 
use, since it enables R(Qm) to be calculated more efficiently (recall that the 
lattice rule Qm has nmr quadrature points). 

Section 4 concludes the paper with some numerical results. 

2. A PRELIMINARY RESULT 

Here we consider the rank-m lattice rules given by (1.8), that is, 

QMf = nmr .. E Ef (rZ+n)' 
nrkmO= ki 0 j10 

where m = 1, ... , s, z and r have no nontrivial common factor, and n and 
r are relatively prime. Though Qm has order nmr, we now show how it is 
possible to obtain R(Qm) by using only r evaluations of a modified function 
fe), rather than nmr evaluations of fN (with N = nmr). This result, modeled 
on an analogous result in [4], will be used in the next section to obtain bounds 
on R(Qm). 
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Theorem 2. For 1 < m < s and n > 2, let f() be the function on Rs defined 
by 

(2.1) fn (x) := (lIFI )(xe)) H FN(XP), 

where 

(2.2) PNkX)+H = 1+/:) hi 
nhE:E*(N/n) 

h 

and define the r-point rank- 1 rule by 

(2.3) m f rZm Zm+, -Zs 
J=0 

where z= (z1, ...,zs). Then 

(2.4) R(Qm) = Qm )f) -1. 

Proof. Using (1.7) and (1.8), we obtain 

mn- n-l r-l (kO km 0 0.. 0) 
R(Qm) = -E zt t-+J-1 

1 n-I n-I r-1 m el2nh(jzt/r+ke/n) 

nmr Z Z ii L 
km=O k0 =0 j=O e= 1-N/2<h<N/2 h 

x JJ FN (JZp)- 
p=m+ 1 

=- I 
ZK5n m) fj FN(JZp)-l, 
j=0 p=m+l 

where we have used (1.5) and (1.6) in the second step, and 

n-1 n-1 m 1 el2h(jzt/r+kt/n) 
K(n, m) 1_x 

j nmn2 " 11 1 L Ihi 
km=O k=Oe==1 hEE* (N) 

II 
E 

{1 
+ E el2lrhze/ (el27th/n)k1 

t=l k=O hEE*(N) / 
M t~~~~nhjzl Ir M t~~~~~~~e27rnhize/r 

= H 1e(n + l lh/n) =J7J(1+ e h 
e=1 hEE*(N) e= nhEE* (N) 

h-O (mod n) 

M ( 1 , ei27rhjgnz/r) = (n) (jn) 
f=1 ~ hEE* (N/n) / 1 
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Thus, 

I r-1 M m jn )) S ( R(Qm)Z(JIFk(n)(!!z)) FN(LzP)1 

which is equivalent to (2.4). 0 

To apply this theorem in practice, we need to be able to evaluate the functions 
N given by (2.2). However, from (1.6) and (2.2) we have 

(2.5) Fk'(X) = -FN/ln(X) + 1-- 

Thus, Fkn) is no more difficult to evaluate than FN. In fact, since FN/n = Fnm-lr 

has less terms than FN = Fnmr, evaluation of E(n) may well require less work 
than evaluation of FN. 

3. BOUNDS ON R(Qm) 

As indicated in ? 1, we shall obtain bounds on R(Qm) for the case in which 
r is prime by obtaining an expression for a certain mean value of R(Qm) . The 
mean is taken over all integer vectors z for which -r/2 < Zk ? r/2, Zk 0 0, 
1 < k < s; reasons for choosing these vectors z as the admissible vectors may 
be found in [1]. We denote the set of these (r - I)s vectors by Zr. Thus, the 
mean M, r is defined by 

(3.1 ) Mmn~r := (r1)s Z R(Qm). 
zEZr 

An expression for Mmnr when r is prime is given in the following theorem. 
We remark that it would be possible to obtain an expression for the mean of 
R(Qm) over appropriate admissible vectors z when r is not prime. However, 
the expression would be much more difficult to obtain (compare [8], which 
derives an expression for the mean value of R for rank-2 rules). We recall that 
E*(k) is defined for any positive integer k by E*(k) := {h E 2: -k/2 < h < 
k/2, h 0 0}. 

Theorem 3. For 1 < m < s, n > 2, and r a prime number so that r does not 
divide n, we have 

M(n)- 1I + Snrir)m (1 + Snmr)sm 

r - I Snm-ir-Snm l Snmr Snm ASm 
+ ~r 1- n(r- 1) J- r-1 J 1 

where, for any positive integer k, 

Sk=Z hl. 
hEE* (k) 

Proof. Let g be an integer vector of the form 

g= (nzl, ,nzm zm+li ,.,zs) 
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where z = (z1, ..., Z5). Then, using (2.3) and (2.4), we have 

R(Qm) =-f )(? +- f() (g) -1, 
j=1 

where the j = 0 term has been separated out because it is independent of z. 
Since N = nmr, it follows from (1.6), (2.1), and (2.2) that 

(N (0 rI I) ( ) f~n)(o)-T~l+.~ hEE*(nm-1r) 
I p=m+(l hEE*(nmr) 174 

Smr 
m 

- (1+Sn;r)m(l +Snmr)sm. 

Writing 

-mr r (+ Sn ) ( + Snmr)sm 

we then have 

R(Qm) = Hm(n)r + - 
I 

1: P) (g)-- 

j=1 

Now let Gm be the set of all integer vectors g of the form given above with 
Z E Zr . Then from the definition of Mmn)r in (3.1) we have 

(rn1 Z 

f~ 
) 
(Lg) -1. =r-I~s + r mr- r)E E (N (r) -1 

We shall write this as 

Mm~n~r Hm~n~r m, r 

With N = nmr, we see from (1.6), (2.1), and (2.2) and the definition of Gm 
that 

0(n) I 
1 

..I ei27rhinzt/r'~ 
mr r(r l)s Z n (hI 

j=1 zlEE*(r) zsEE*(r) =1 hEE*(nm-lr) 

Pm 1( x i27rhjzp/r-1 I I ( 1: e'^Z) p=m+ 1 h EE* (nmr) 

1 r-I{ m 1_el27rhjnzp/r 
r rll l heE* n (mIh) 

j=1 i=1 ztEE*(r) hEE*(nm-'r) 

p=m+l zp EE* (r) ( heEE(nmr) g 
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r r ( - I Inhi j= 1 zEE* (r) hEE* (nm-1Ir) z y~~~S- 

Thus, ~~~+ 1 Zlh)l -1. 

( r-1 
zEE*(r) hEE(nmr) 

) _1 

Thus, we can write 

(3.2) m(n) - Z (1 + r1 T )r(I)) (1+ r! 1 Tmr(I)) -1, 
j=1 

where, for k = 1 and k = n, we define 

lr~~~~k) ~~~ei2lrhikz/r 
TAmr(j) = kht i/ < j < r -1. 

zEE*(r) hEE*(nmr/k) 

Now separating out the terms with h- 0 (mod r), we obtain 

-r~~~~nlrh+I ei27rhinz/r 
TA, Er(I) Zrh Z I nhr ZEE* (r) rhEE*(nm-lr) zEE*(r) hEE*(nm-lr) 

hAO (mod r) 

= (r-1) Z Inhl+ E eli27rhinz/r 
Inrhl 

+ 
~~~~InhI hEE*(nmEl) zEE*(r) hEE*(nm-'r) 

h$O (mod r) 

Sn- ei27thinz/r 

nr 
zEE*(r) hEE*(nm-lr) 

Ih 

h~tO (mod r) 

But for h 0 0 (mod r), we have 

E ei27h/nzr - E ei2hn 1 = -1, 
zEE* (r) -rl2<z<r/2 

since r is prime (by assumption), and therefore hjn 0 0 (mod r) for 1 < j < 
r - 1. Thus, we obtain 

1 n Snm-i 1-1 
r-1 Tr(I) = r nr + 1 Z I Inhj 

hEE*(nm-lr) 
h$O (mod r) 

Snm-1 1 / = ___ 
1 ( 

__ 
1 

nr (r-1)n \hEE*(nm-1r) IIZ rhEE*(nm-lr) Irhli 

(3-3) SnM-1 1 I I 1m) 

_n 1 -5 Sflm- I 
nr (r -)n n r J 

Snm-Ir - Snm-i 
n(r-1) 
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In an analogous manner, it can be shown that 

I 1 Snmr - Snm 
(3.4) -1 Tmlr(I) = (r-l) 

Since T,?r(j) and T,'?r(j), 1 < j < r - 1, are independent of j, we see from 
(3.2) that (3.3) and (3.4) yield the desired result. 0 

Bounds on R follow from the obvious fact that there must be a Z E Zr for 
which R(Qm) < M(n)r. We thus obtain the following corollary. 

Corollary 4. For 1 < m < s, n > 2, and r a prime number so that r does not 
divide n, there exists a z E Zr such that 

R(Qm) <? (1 + Snrr)m(1 + Snmr)S-m 

(3.5) + r n1 -Smi~Sl- ' 
r-1{ Snm-Ir -SnM lA 1 _ Snmr Snm A _ 

r n(r - 1) t r- I 

Remark. Theorem 3 and Corollary 4 also hold for m = 0. In that case, the 
right-hand side of (1.8) becomes the rank-i rule (1.3) (with N = r). Thus, 
M(n)r becomes the mean of R for rank-I rules of prime order N. Since 
Snm = = 0, the mean of R for rank-i rules of prime order N may then be 
written as 

(3.6) MON jN(I + SN)s + - ( I S N ) 

Now it follows from [7, Lemmas 1 and 2] that 

(3.7) Sk < 2 log(k) + fi + 

where =2y - log(4) -0.2319. Since SN has N - 1 terms, we have 
0 < SN ? N - 1, and hence 0 < 1 - SN/(N - 1) < 1. By using (3.6) and then 
(3.7), we obtain 

MO,N < (1 + SN)S < N (1 + 2log(N) + f6 + +) < (0.81 + 2 log(N))s 

for N > 5, N prime. Simple calculations show that this last bound also holds 
when N = 2 and N = 3. Thus, there exists a z E ZN such that 

R(Q0) < k (0.81 + 2 log(N))s, 

which recovers the result for prime N found in [7, Theorem 2]. 
We see that calculation of the bound on R(Qm) given in (3.5) requires the 

evaluation of four sums. To obtain a bound that is easier to calculate, we can 
make use of (3.7) and the corresponding lower bound 

4 
Sk > 2log(k) + /1 - 

which may also be derived from [7, Lemmas 1 and 2]. Then we have the 
following corollary. 
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Corollary 5. For 1 < m < s, n > 2, and r a prime number so that r does not 
divide n, there exists a z E Zr such that 

R(Qn) )< 1 (1+2 0n r)+ +n2n 2r2) 

x (i + 2log(nmr)+ I) + n22) 

( 2log~r) -4 + r2 )\m\( 4 + r2 s-m 
+ r- n(r -1) ) ri n- n2) -1 

4. NUMERICAL RESULTS 

Here we give the results of some calculations of R(Qm) with s = 7 that 
were obtained by making use of Theorem 2 and (2.5). The required functions 
FN and F/Nf were calculated using the method given in [5]. The actual lattice 
rules Qm used were taken from [3]. There, n was chosen to be 2, and for 
each m and r, the integer vectors z required in ( 1.8) were of the one-parameter 
Korobov form 

z(a) =(1,a, a2 ...,a6) (mod r), 1 <a<r. 

For each m and r, the value of a used was obtained by minimizing the 
quantity P2(Qm). For a lattice rule Q, this quantity is defined by 

P2 = P2(Q) := L' - - I P2=P2(Q):=Z 
(hih2 .. j5)2' 

and is another widely-used criterion for measuring the goodness of lattice rules 
(see, for example, [1, 3, 4, 8, 11]). 

Values of R(Qm) for lattice rules of approximate order 15000, 18000, and 
24000 are given in Tables 1, 2, and 3 (next page) respectively. Most of the 
lattice rules taken from [3] did not have r prime, and, in fact, of the 24 values 
of r used, only six were prime. For these six values, the bounds on R(Qm) 
given by Mm)r are also listed in the tables. As can be seen, the bounds are 
quite reasonable. 

The expression for M')r given on the right-hand side of (3.5) indicates that 
the largest contribution to Mmnr would come from Hn)r, where 

H(n)=- (l+Sr (lr) (l+Snmr)srn 

The proof of Theorem 3 shows that Hm,?r is just fIN(O)/r. Thus,thisquantity 
will always be present in an expression for Mmn)r regardless of whether r is 
prime or not. The values of this quantity (with n = 2 ) are given in the tables, 
and they appear to provide a useful bound on R(Qm). Certainly for r prime, 
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TABLE 1 

m r N = 2mr R M2) H(2) m, r m, r 
0 15019 15019 85292.13 85293.40 
1 7509 15018 83642.07 83647.83 
2 3753 15012 82040.46 82042.08 
3 1877 15016 80450.10 80451.22 80451.26 
4 937 14992 78933.33 78934.32 78934.39 
5 469 15008 77384.85 77385.74 
6 233 14912 76030.79 76031.32 76031.50 
7 117 14976 74470.21 74470.84 

TABLE 2 

m r N = 2mr R M(2) Hm )r 
0 18101 18101 80549.58 80550.38 
1 9049 18098 79025.61 79027.31 79027.32 
2 4525 18100 77525.14 77526.39 
3 2261 18088 76070.72 76072.08 
4 1131 18096 74618.91 74619.68 
5 565 18080 73223.85 73224.60 
6 281 17984 71950.82 71951.35 71951.50 
7 141 18048 70510.86 70511.52 

TABLE 3 

m r N = 2mr R M(2 Hm, r 
0 24041 24041 73508.53 73509.63 
1 12019 24038 72155.21 72156.72 
2 6009 24036 70826.53 70827.72 
3 3005 24040 69516.33 69517.51 
4 1501 24016 68256.59 68257.37 
5 751 24032 66983.13 66983.78 66983.86 
6 375 24000 65775.73 65776.40 
7 187 23936 64617.34 64617.94 

the results in the tables show that numerically there is very little difference 
between MAmr and Hn). For fixed n and fixed N = nmr, we would expect 
Hmn)r to decrease as m increased, and this is what is observed in each of the 
three tables where the values of N are approximately the same. This suggests 
that for lattice rules of the form (1.8) with approximately the same order, one 
might expect the rules of higher rank to have smaller values of R than the rules 
of lower rank. 
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